데이터에 기반한 modelling을 할 때 자주 나오는 개념인 bias-variance tradeoff. 중요하지만 헷갈릴 수 있는 개념인데 쉽게 정리된 글을 Quora에서 발견하여 번역하여 공유한다. 원문: How would you explain the bias-variance tradeoff to a five year old? 이 그림 하나면 Bias-Variance tradeoff를 설명하기에 충분할 것이다. 모델링, 통계학, 머신러닝 등에 대해서 알고 있다면 위의 의미를 더 깊게 이해해 보자. 데이터가 가지고 있는 불확실성이나 noise 뿐만 아니라 모든 학습 알고리즘은 두 가지 종류의 에러를 가진다. 1. Bias2. Variance Error(X) = noise(X) + bias(X) + va..
Linear regression 대한민국 국민들의 연봉에 관한 데이터가 있을 때, 각 개인의 키에 따른 연봉을 본다고 생각해 보자. 이런 개인의 특징을 이용하여 연봉을 예측하고자 할때 가장 기본적으로 사용할 수 있는 모델이 Linear regression 이다. 이는 통계학에서 사용되는 것과 동일한 개념이다. 통계학에서는 모델의 유의성, 변수의 중요도 등에 초점을 맞추는 반면 머신 러닝에서는 예측 자체를 위한 알고리즘에 초점을 맞춘다. 위의 문제에서는 키와 연봉에 관한 데이터가 하나의 데이터가 되며 그 모임이 모델을 만들때 사용되는 트레이닝 셋이다. 예측에 이용하는 feature가 하나이면 univariate, 여러 개이면 multivariate 이며 각 feature의 선형 결합에 의해 모델을 구성하면..
- Total
- Today
- Yesterday
- 카타르 음주
- operating systems
- 리버스엔지니어링
- 대학원
- reversing
- Data Structure
- Discrete Mathematics
- 카타르
- 리버싱
- 기계학습
- 알고리즘
- 데이터 과학
- 운영체제
- Algorithms
- 머신러닝
- java
- 데이터 사이언스
- Machine Learning
- linux
- android
- 자료구조
- Data Science
- statistical learning
- 리눅스
- 자바
- 안드로이드
- Reverse Engineering
- 개발
- 이산수학
- 통계학습
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |