Basic Structures:Sets, Functions, Sequences, and Sums
2장은 기본적인 구조에 대해서 나온다. Sets 집합은 정렬되지 않은 object의 collection이다. 집합 내의 object는 element, member로 불린다. 어떠한 집합 A의 모든 멤버가 다른 집합 B의 멤버일 경우 A는 B의 부분집합이다. subset에서 equal을 제외한 것을 proper subset이라고 한다. 아.. 기호가 많은데 글로만 쓸려니 힘들다 'ㅁ' 어떠한 집합 S에 대해 |S|를 S의 cardinality 라고 하며 집합 S의 멤버의 갯수를 의미한다. 어떤 집합의 카디날리티가 유한하면, 유한집합이라고 하고.. 카디날리티가 무한하면, 무한집합이라고 한다. Power Set P(S)는 집합 S의 모든 부분집합을 원소로 가지는 특이한 집합이다. Cartesian produc..
Computer Science
2011. 6. 27. 23:33
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 개발
- 자료구조
- Discrete Mathematics
- linux
- 데이터 과학
- Data Structure
- reversing
- Reverse Engineering
- 자바
- operating systems
- 안드로이드
- Algorithms
- 기계학습
- 머신러닝
- 대학원
- Machine Learning
- 운영체제
- Data Science
- 카타르
- 리버스엔지니어링
- java
- 카타르 음주
- 데이터 사이언스
- statistical learning
- 알고리즘
- 리버싱
- 리눅스
- android
- 이산수학
- 통계학습
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
글 보관함